Quickstart
1. Install the Clusterfudge Python API
Run the following commands in your terminal
pip install clusterfudge
python3 -m clusterfudge login
Depending on your local setup, you may need to use
pip3 install clusterfudge
2. Run the fudgelet on a linux node
Run the following cmd on a linux server
curl https://get.clusterfudge.com/run.sh | CLUSTERFUDGE_API_KEY=$YOUR_API_KEY_HERE bash
This downloads and runs the latest version of the fudgelet as your current user; for other install options (Docker, package managers, etc) see Installation
3. Launch workload
Copy the following example into launch.py
import clusterfudge
def main():
workload = 'import os, time; task_id = os.environ.get("CLUSTERFUDGE_REPLICA_INDEX"); print(f"Hello from TASK_ID={launch.launch_id}"); time.sleep(60)'
client = clusterfudge.Client()
launch = client.create_launch(
clusterfudge.CreateLaunchRequest(
name="hello-world-example",
description="Sleep 60 on 2 replicas with 1 CPU each.",
jobs=[
clusterfudge.Job(
short_name="hello_world",
replicas=2,
processes=[
clusterfudge.Process(
command=["python3", "-c", workload],
),
],
),
],
)
)
print(f"Launched: launch/{launch.launch_id} 🎉")
print("https://clusterfudge.clusterfudge.com/dashboard/launches/")
if __name__ == "__main__":
main()
Launch your workload
python launch.py